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Abstract

In this chapter we would like to get the handling of the proof assistent
Minlog across to the reader. Minlog is based on the Theory of Computable
Functionals and it is based on the second chapter of my master’s thesis
[4].
On the website of the Minlog system [2] there are instructions for the
download and installation of Minlog. We will use the dev branch. How
Minlog can be changed to the dev branch is also described on this page.
In the Minlog file there is the folder doc, which contains the tutorial
tutor.pdf and the reference manual ref.pdf. Some examples in this
chapter are taken form the tutorial. In the reference manual many more
commands for Minlog can be found.
Thanks to Helmut Schwichtenberg for proofreading this chapter.

1 Fundamental Commands in Minlog

1.1 Declaration of Predicate Variables

To deal with variables of any kind it is useful to declare them first. In the next
example we need propositional variables, which are nullary predicate variables,
to prove a theorem. A predicate variable can be declared with the command
add-pvar-name. This command has the form

(add-pvar-name NAME (make-arity TYPES)).

Instead of NAME a list of strings is expected. For TYPES a list of types of the
arguments should be inserted. In our case we would like to declare nullary
predicate variables, which we denote as A, B and C. The list of types are therefore
empty and we enter

(add-pvar-name "A" "B" "C" (make-arity)).

As the output of Minlog we get

ok, predicate variable A: (arity) added

ok, predicate variable B: (arity) added

ok, predicate variable C: (arity) added

For demonstrations we declare a predicate variable P with one argument of type
N and one argument of type N→ N:
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(add-pvar-name "P" (make-arity (py "nat") (py "nat=>nat")))

As one might expect, nat is the name of the algebras of natural numbers. This
algebra is considered more deeply in later sections. The arrow between types is
denoted by => and the command (py STRING) indicates that STRING should be
interpreted as a type.
We also use often the commands (pt STRING), (pv STRING) and (pf STRING),
which analogously indicates that STRING shoudl be interpreted as term, variable
or formula.

1.2 First Proof

After the implementaion of the propositional variables A, B and C we use them
to prove the theorem (A → B → C) → ((C → A) → B) → A → C. A
formal derivation of this short formula can be done easily. Writing a proof in
Minlog does not mean giving a derivation tree of the formula. This would be
too complex. Minlog processes the entered commands internally to a derivation
tree, which can be displayed, as we will see.
At the beginning of each proof we enter the formula which we want to prove.
We do this with the command

(set-goal FORMULA).

Instead of FORMULA we insert the formula in quotes. Therefore we wirte

(set-goal "(A -> B -> C) -> ((C-> A) -> B) -> A -> C").

As one sees, -> stands for the implication arrow →. As output we get

--------------------------------------------------------------

?_1:(A -> B -> C) -> ((C -> A) -> B) -> A -> C

Below the dashed line there is the current goal formula. The assumptions which
are given for the proof are located above the dashed line. We call this domain
context. In this state of the proof there are no assumptions in the context but,
since the goal formula is an implication with three premises, we move these
premises as assumptions into the context and we prove the conclusion from
these assumptions. The command to do this is

(assume NAMES).

Instead of NAMES we insert a list of names for the assumptions. Our list consists
of three names. For example we write

(assume "assumption1" "assumption2" "assumption3")

and the output of the program is

2



ok, we now have the new goal

assumption1:A -> B -> C

assumption2:(C -> A) -> B

assumption3:A

--------------------------------------------------------------

?_2:C

The three assumptions are in the context. If we had writen two names, we
would only have the first two premises as assumptions in the context, and if we
had writen more then three names, we would get an error message.
We now have to prove C by using the assumptions above the line. Since
assumption1 has C as conclusion, we ought to use this assumption. The general
command for this is

(use ASSUMPTION),

whereby for ASSUMPTION we put in the name of the assumption which we would
like to use. This assumption must have the goal formula as conclusion, otherwise
we would get an error message. Therefore we enter

(use "assumption1").

The assumption with name assumption1 has two premises. So Minlog requires
a proof for each of these premises and we get two new goal formulas:

ok, ?_2 can be obtained from

assumption1:A -> B -> C

assumption2:(C -> A) -> B

assumption3:A

--------------------------------------------------------------

?_4:B

assumption1:A -> B -> C

assumption2:(C -> A) -> B

assumption3:A

--------------------------------------------------------------

?_3:A

First we have to prove the lower formula, which is exactly assumption3. There-
fore we write

(use "assumption3").

The computer informs us that the lower formal is proven and we now have to
give a prove of the upper formula:

3



ok, ?_3 is proved. The active goal now is

assumption1:A -> B -> C

assumption2:(C -> A) -> B

assumption3:A

--------------------------------------------------------------

?_4:B

To prove this goal we use assumption2 by writing (use "assumption2"). Then
we have to prove A → B, which we do by moving A into the context with
(assume "assumption4") and using assumption3 with (use "assumption3").
This finishes the proof and the output is

ok, ?_6 is proved. Proof finished.

1.3 Representation of Proofs

After proving a formula Minlog is able to display this proof in different ways.
With the command

(display-proof)

we get a representation which is similar to the derivation tree. An expansion of
this command is

(cdp),

which is an abbreviation for (check-and-display-proof). In addition to
display-proof the proof is checked for correctness. If the proof is correct,
the output is the same. In our case we get

.....A -> B -> C by assumption assumption1295

.....A by assumption assumption3297

....B -> C by imp elim

.....(C -> A) -> B by assumption assumption2296

......A by assumption assumption3297

.....C -> A by imp intro assumption4301

....B by imp elim

...C by imp elim

..A -> C by imp intro assumption3297

.((C -> A) -> B) -> A -> C by imp intro assumption2296

(A -> B -> C) -> ((C -> A) -> B) -> A -> C

by imp intro assumption1295

It ought to be considered as a derivation tree. The number of dots at the begin-
ning of each line indicates in which level of the derivation tree the subsequent
formula is. After the formula there is the name of the applied derivation rule.
A representation as derivation term is also possible with the commands

(proof-to-expr)
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and

(proof-to-expr-with-formulas).

Both commands provide a derivation term of the proof. With the last com-
mand also the type of each variable is displayed. In our case the output of
(proof-to-expr-with-formulas) is

assumption1: A -> B -> C

assumption2: (C -> A) -> B

assumption3: A

assumption4: C

(lambda (assumption1)

(lambda (assumption2)

(lambda (assumption3)

((assumption1 assumption3)

(assumption2 (lambda (assumption4) assumption3))))))

which can easily be understood as derivation term.

1.4 Saving Theorems

Usually when a theorem is proven, one would like to use this theorem later
again, maybe one reduces it on a special case or uses it as a lemma to prove a
larger theorem. With the command

(save NAME)

the currently proven statement will be saved with the name NAME. In the previous
section we proved the formula

(A -> B -> C) -> ((C -> A) -> B) -> A -> C

and now we can save it with

(save "Theorem1")

in Minlog. The output is

ok, Theorem1 has been added as a new theorem.

ok, program constant cTheoremOne: (alpha148=>alpha149=>alpha147)=>

((alpha147=>alpha148)=>alpha149)=>alpha148=>alpha147

of t-degree 1 and arity 0 added

When a theorem is saved we can use it in subsequent proofs, for example with
(use "Theorem1").
With the command

(display-theorems NAME)
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Minlog shows us the theorem with name NAME. One can also insert a list of
names instead of NAME, then all theorems with these names are shown. If we
enter for example (display-theorems "Theorem1"), Minlog returns

Theorem1 (A -> B -> C) -> ((C -> A) -> B) -> A -> C

The pritty-print command, which has the form

(pp NAME),

displays also the formula with name NAME. But here the output is without the
name

(A -> B -> C) -> ((C -> A) -> B) -> A -> C

and it takes only one argument. In contrast to display-theorems with pp it is
posible to display any saved formula in the system and also terms can be shown
with it. Therefore we often use pp later on.

1.5 Display Settings

Before proving new theorems in Minlog we would like to mention some useful
commands, which help to get a clear representation of the output. The first
statement, which we announce here, is

(set! COMMENT-FLAG BOOL).

If one inserts #f instead of BOOL, Minlog does not show comments anymore.
Only irregularities are shown such as error messages and some warnings. Elim-
inating the comments is useful to enter many commands on a row, because the
computer does not have to give an output and is therefore faster. If we place
#t instead of BOOL, the comments are shown again.
To remove some assumptions from the context one can use the command

(drop STRINGS).

With this command Minlog does not display anymore the assumptions whose
names are written instead of STRINGS. As an example in the last proof we had
the output

ok, we now have the new goal

assumption1:A -> B -> C

assumption2:(C -> A) -> B

assumption3:A

--------------------------------------------------------------

?_2:C

after promoting the premises in the context. If we enter

(drop "assumption1" "assumption2" "assumption3")
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we get back

ok, we now have the new goal

--------------------------------------------------------------

?_3:C

but we can continue the proof analogously as above. Dropping assumptions
can be helpful to make goals more readable, by removing useless assumptions.
However, these are still present, they are just hidden.
With the instruction

(display STRING)

the text STRING is shown, even if (set! COMMENT-FLAG #f) was entered. In
this way one can point out important declarations, definitions or theorems. In
the example above it may be useful to enter

(display "A, B and C are now propositional variable")

to point out that A, B and C are now taken. With

(newline)

one can make a line break.
As a last resort the command

(undo)

is to mention. With it one can revert the last step in a proof. Then Minlog
shows the state before the last command.

1.6 Loading External Files

The folder lib of the Minlog file contains very helpful data files. One of them
is nat.scm. There the natural numbers are introduced, some functions on the
natural numbers like +, ∗ and the Boolean ones ≤ and < are defined and many
simple properties of these are proven. For ones own proofs one would like to use
this preparatory work. With entering

(libload NAME)

the file NAME from folder lib is loaded into the system. It is recommended to
use (set! COMMENT-FLAG #f) before loading some files. For loading nat.scm

we write

(set! COMMENT-FLAG #f)

(libload "nat.scm")

(set! COMMENT-FLAG #t)

A general version of libload is the command load. For example

(load "lib/nat.scm")

is equivalent to (libload "nat.scm").
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1.7 Proofs in Predicate Logic

Now we would like to prove formulas with universal quantifiers. As first example
we take the formula ∀n(Pn → Qn) → ∀nPn → ∀nQn where n has type N and
P , Q are unary predicate variables. First we load nat.scm as in the section
above. In this file nat is set as the name of the algebra of natural numbers and
n, m are already declared as variables of type nat. We define P and Q via the
command

(add-pvar-name "P" "Q" (make-arity (py "nat")).

and set goal formula with

(set-goal "all n(P n -> Q n) -> all n P n -> all n Q n").

As one can see, the universal quantifier is denoted by all and requests two
arguments. The first argument is the variable to be quantified in the formula
given by the second argument. Minlog returns

--------------------------------------------------------------

?_1:all n(P n -> Q n) -> all n P n -> all n Q n

With

(assume "assumption1" "assumption2")

we move the premises into the context. Then the goal formula is all n Q n. To
prove it we put a new variable into the context and prove the formula specialized
to this variable. Therefore we enter

(assume "m")

and the output is

ok, we now have the new goal

assumption1:all n(P n -> Q n)

assumption2:all n P n

m

--------------------------------------------------------------

?_3:Q m

Of course, we could also write (assume "n") to get the goal formula Q n. But
it has always to be a variable of type nat. Therefore (assume "a") would lead
to an error message.
To prove Q m we use assumption1 via (use "assumption1"), since it is an
abstraction of Q m. As output we get
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ok, ?_3 can be obtained from

assumption1:all n(P n -> Q n)

assumption2:all n P n

m

--------------------------------------------------------------

?_4:P m

and with (use "assumption2") the proof is already finished.

1.8 use-with

Sometimes Minlog does not recognize how a formula in the use-command has
to be specialized. In such cases one has to tell directly how to use a formula.
To do this there is the instruction

(use-with NAME LIST).

For NAME one inserts the name of the formula which should be specialised. In-
stead of LIST we need a list of formulas and terms. For each universal quanti-
fier the corresponding term TERM have to be stated with (pt TERM). For each
premise one has to provide the name of an assumption of this formula. Op-
tionally one can write "?" for a premise. Then Minlog requires a proof of this
premise afterwards.
As an example we consider the proof of the last section. After the instructions

(set-goal "all n(P n -> Q n) -> all n P n -> all n Q n")

(assume "assumption1" "assumption2")

(assume "m")

we have the output

ok, we now have the new goal

assumption1:all n(P n -> Q n)

assumption2:all n P n

m

--------------------------------------------------------------

?_3:Q m

Here the goal formula is a specialization of assumption1. So instead of (use
"assumption1") we can also write

(use-with "assumption1" (pt "m") "?")

and the output again is

ok, ?_3 can be obtained from

assumption1:all n(P n -> Q n)
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assumption2:all n P n

m

--------------------------------------------------------------

?_4:P m

Note that for each universal quantification and each implication in front of
the goal formula there has to be exactly one argument in the use-with com-
mand. The goal formula P m can be proven with (use "assumption2") or with
(use-with "assumption2" (pt "m")). Here one sees that the use instruction
is a short form of use-with and actually one only needs use-with, if Minlog
does not recognize how to use use.

1.9 inst-with

The instruction inst-with is similar to the command use-with. One also
specializes a formula. But the specialized formula does not have to be the goal
formula but it is added to the context. The command has the form

(inst-with NAME LIST).

Analogously to use-with, NAME has to be the name of the formula which will
be specialized and LIST is a list of formula names and terms. As example we
take the initial situation of the last section:

ok, we now have the new goal

assumption1:all n(P n -> Q n)

assumption2:all n P n

m

--------------------------------------------------------------

?_3:Q m

Now we specialize assumption2 to m with the command

(inst-with "assumption2" (pt "m"))

and get

ok, ?_3 can be obtained from

assumption1:all n(P n -> Q n)

assumption2:all n P n

m 3:P m

--------------------------------------------------------------

?_4:Q m

As we see, the specialized formula appears in the context and has the name 3.
If we use this formula later on, we must not put 3 in quotes.
If one would like to give a name to the new formula one can use the command
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(inst-with-to NAME LIST NAME1).

The arguments NAME and LIST are analog to the corresponding ones in inst-with

but NAME1 is the name of the new formula in the context. In our example we
can write

(inst-with-to "assumption1" (pt "m") 3 "goal")

to get the output

ok, ?_4 can be obtained from

assumption1:all n(P n -> Q n)

assumption2:all n P n

m 3:P m

goal:Q m

--------------------------------------------------------------

?_6:Q m

and by entering (use "goal") the proof is finished.

1.10 assert and cut

Many proofs, especially long proofs, one would like to split up into different
parts such that in each part another formula is proven. In informal proofs this
is done by expressions like “Claim:...” or “It is sufficient to prove ...”. To do
this in Minlog there are the two commands

(assert FORMULA)

and

(cut FORMULA).

The proof of the goal formula GOAL is devided by both commends into a proof
of FORMULA and a proof of FORMULA->GOAL. The difference between these two
commands are the order of the new parts. By using assert Minlog firstly
requires a proof of FORMULA and afterwards a proof of FORMULA->GOAL. By using
cut it is reversed.
In the example of the previous sections after the output

ok, we now have the new goal

assumption1:all n(P n -> Q n)

assumption2:all n P n

m

--------------------------------------------------------------

?_3:Q m

we can enter (assert "P m") and get
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ok, ?_3 can be obtained from

assumption1:all n(P n -> Q n)

assumption2:all n P n

m

--------------------------------------------------------------

?_4:P m -> Q m

assumption1:all n(P n -> Q n)

assumption2:all n P n

m

--------------------------------------------------------------

?_5:P m

back. The new goal can be proven with (use "assumption2") followed by
(use "assumption1"). The output after using (cut "P m") is

ok, ?_3 can be obtained from

assumption1:all n(P n -> Q n)

assumption2:all n P n

m

--------------------------------------------------------------

?_5:P m

assumption1:all n(P n -> Q n)

assumption2:all n P n

m

--------------------------------------------------------------

?_4:P m -> Q m

These are the same goals in reversed order.

1.11 Proof Search

Minlog is able to search for proofs of formulas by itself. Of course, this is only
successful for short proofs. The command to search for the current goal is

(search).

In the last sections we have seen many unnecessarily long proofs of all n(P n

-> Q n) -> all n P n -> all n Q n. Now we see the shortest proof: after
entering

(set-goal "all n(P n -> Q n) -> all n P n -> all n Q n")

(search)
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we get the output

ok, ?_1 is proved by minimal quantifier logic. Proof finished.

and the proof is done. The probability that a proof is found by search is
indirect proportional to the length of the proof. Especially the probability is
very low if Minlog has to find a witness for an existential quantifier or if it has
to use not only the context formulas but some other theorems.
To use the search command several times in a row one can use the instruction

(auto).

This command enters the command (search) until the proof is done or (search)
does not find a proof anymore.

1.12 Cheating in Minlog

It often occurs that it takes very long to prove formulas by Minlog although
they are obviously true for humans. In such cases it could be reasonable to
declare these formulas as globals assumptions first and prove them later. By
the instruction

(add-global-assumption NAME FORMULA)

the formula FORMULA is saved under the name NAME. After adding this formula
as a global assumption it can be used in each proof, for example by the use

command. The instruction

(display-global-assumption NAME)

shows the global assumption with name NAME. Instead of NAME one can also put
in a list of names. Then all global assumptions in this list are shown. If this list is
empty, all global assumptions are shown. If we enter (display-global-assumption)
directly after starting Minlog, we get the output

Stab ((Pvar -> F) -> F) -> Pvar

Efq F -> Pvar

StabLog ((Pvar -> bot) -> bot) -> Pvar

EfqLog bot -> Pvar

We see, that the ex-falso-quodlibet and the stability are global assumptions by
default.
The command

(remove-global-assumption LIST)

removes the global assumptions in list LIST. Therefore, if we want to use Minlog
without any global assumptions, we accomplish this with the command

(remove-global-assumption "Stab" "Efq" "StabLog" "EfqLog").
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While proving a formula it sometimes occurs that one would like to set a subgoal
as a global assumption. In such cases one can use the command

(admit).

By entering (admit) the current goal formula becomes a global assumption and
is considered to be proven. In this way one can actually prove each formula,
which justifies the title of this section. Therefore it is recommended that a
finished proof contains admit or a global assumption as rarely as possible.

1.13 Searching in Minlog

While doing a proof about a certain issue, for example about the addition on
naturals numbers, one often wants to know which statements about this issue are
already given. A list of the given statements can be displayed by the command

(search-about LIST).

Instead of LIST Minlog requires a list of strings and the output are all theorems
and global assumptions whose names contain each of the strings in the list.
Therefore the name of a theorem should always be as meaningful as possible.
Now if nat.scm is loaded, we can search for theorems about the addition on
naturals numbers by the command

(search-about "Nat" "Plus").

As ouput we get

Theorems with name containing Nat and Plus

NatPlusDouble

all n,m NatDouble n+NatDouble m=NatDouble(n+m)

.

.

.

NatPlusComm

all n,m n+m=m+n

No global assumptions with name containing Nat and Plus

which is a long list of theorems and an empty list of global assumptions. Of
course, instead of the dots there are many more theorems.

2 Algebras and Inducively Defined Predicates

In this section we introduce algebras and inductively defined predicates in Min-
log.

14



2.1 Algebras

The general command to define algebras in Minlog is given by

(add-algs NAME LISTS).

Here NAME is the name of the defined algebra in quotes and LISTS is a List of
pais

’(NAME TYPE)

with a name for the constructor of type TYPE. Here every constructor gets his
name during the definition of the algebra. We will consider some examples:
in nat.scm the algebra of natural numbers is given by

(add-algs "nat" ’("Zero" "nat") ’("Succ" "nat=>nat")).

As we see, zero is denoted by Zero and the successor is denoted by Succ. By
entering the instruction

(display-alg NAME)

Minlog shows us a list of the constructors of the algebra NAME. In our case
(display-alg "nat") leads to the output

nat

Zero: nat

Succ: nat=>nat

The boolean algebra is implemented in Minlog by default. Its two constructors
have the names True and False. We can see this see by entering (display-alg "boole"):

boole

True: boole

False: boole

In Minlog we can also introduce algebras with parameters. The strings alpha,
beta, gamma, alpha0, beta0, gamma0 and so on stand for type variables.
In the library file list.scm the algebra of lists is defined by

(add-algs "list" ’("list" "Nil") ’("alpha=>list=>list" "Cons")).

The list type has the paramenter alpha. By using the list algebra this param-
eter has to be written explicitly. We see this by displaying the algebra with
(display-alg "list"):

list

Nil: list alpha

Cons: alpha=>list alpha=>list alpha
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2.2 Declaration of Term Variables

Before using variables Minlog has to know which variables have which type.
For each type with name TYPE the string TYPE is by default also the name of a
variable with the same type. Therefore a command like

(set-goal "all nat nat=nat")

can be understood by Minlog.
If v is a variable of type TYPE, then also v0, v1 and so on are variables of type
TYPE. Hence

(set-goal "all nat1000 nat1000=nat1000")

is also a valid instruction.
Of course, it is also possible to add new names for variables. The command to
do this is

(add-var-name NAMES TYPE).

For NAMES we give a list of the variables names which should have type TYPE.
In nat.scm the letters n, m and l are introduced as variables names for natural
numbers by the instruction

(add-var-name "n" "m" "l" (py "nat")).

2.3 Inductively Defined Predicates

Inductively defined predicates are defined by the command

(add-ids (list (list NAME (make-arity TYPES) ALGNAME)) LIST).

NAME stands for the name of the defined predicate. The types of the arguments
of the predicate are inserted for TYPES. ALGNAME is the name of the algebra of
the inductively defined predicate and the introduction rules of the predicate are
written instead of LIST in the form

’(FORMULA NAME),

whereby FORMULA is the introduction axiom and NAME its name.
As an example, we define the unary inductively defined predicate EvenI, which
says that a natural number is even. To define the property that a natural numer
is even, we define that 0 is even and, if n is even, then also n+2 is even. In Minlog
we do this as follows:

(add-ids

(list (list "EvenI" (make-arity (py "nat")) "algEvenI"))

’("EvenI 0" "InitEvenI")

’("all n(EvenI n -> EvenI(Succ( Succ n)))" "GenEvenI"))

With the command (display-alg "algEvenI") we take a look at the algebra
of EvenI:
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algEvenI

CInitEvenI: algEvenI

CGenEvenI: nat=>algEvenI=>algEvenI

We see that the constructor which corresponds to the introduction axiom Axiom

has the name CAxiom. This holds in general.
One also sees that algEvenI and nat have the same constructor types. Therefore
one could also write nat instead of algEvenI in the definition of EvenI. In
general if one writes an already defined algebra instead of ALGNAME, Minlog
checks whether the constructor types are the same. If this is the case this
algebra is used as the type of the predicate.
By the command

(display-idpc NAME)

the introduction axioms of the inductively defined predicate NAME and its algebra
are shown.
For the predicate EvenI we enter (display-idpc "EvenI") and get

EvenI with content of type algEvenI

InitEvenI: EvenI 0

GenEvenI: all n(EvenI n -> EvenI(Succ(Succ n)))

back.
The introduction axioms are saved as theorems in the system und can be used
for example with the use command. There is also the possibility to use the
instruction

(intro N).

Then Minlog uses the N-th introduction axiom of the predicate in the goal
formula. The numbering starts with 0.

2.4 Proofs with Inductively Defined Predicates

As a counterpart to EvenI we define the predicate OddI with says that a natural
number is odd:

(add-ids

(list (list "OddI" (make-arity (py "nat")) "algOddI"))

’("OddI 1" "InitOddI")

’("all n(OddI n -> OddI(Succ( Succ n)))" "GenOddI"))

We prove the theorem that the successor of an even number is odd. Therefore
we enter the instruction

(set-goal "all n(EvenI n -> OddI(Succ n))").

By using (assume "n" "EvenIn") we put the variable n and the premise EvenI
n into the context and the output is
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ok, we now have the new goal

n EvenIn:EvenI n

--------------------------------------------------------------

?_2:OddI(Succ n)

To prove the goal formula we would like to apply the elimination axiom of EvenI
to the predicate {n|OddI(Succ n)}. In general, if NAME is the name of a formula
which is an inductively defined predicate, we can enter the command

(elim NAME)

to use the elimination axiom of this predicate. The goal formula becomes the
parameter in the elimination axiom and exactly the free variables in the formula
NAME are abstracted. The elimination axiom of EvenI with parameter P is given
by

∀n(EvenI n→ Pn→ ∀n(EvenI n→ Pn→ P (SSn))→ Pn).

Since EvenI n is already given, Minlog requires a proof of P0 and ∀n(EvenI n→
Pn → P (SSn)). Here Pn := OddI Sn and indeed after (elim "EvenIn") we
get the output:

ok, ?_2 can be obtained from

n EvenIn:EvenI n

--------------------------------------------------------------

?_4:all n(EvenI n -> OddI(Succ n) -> OddI(Succ(Succ(Succ n))))

n EvenIn:EvenI n

--------------------------------------------------------------

?_3:OddI 1

For the goal OddI 1 we just write (use "InitOddI"). To prove the other goal
we move with

(assume "m" "EvenIm" "OddISm")

the variable and the two premises into the context. The new goal is given by:

ok, we now have the new goal

n EvenIn:EvenI n

m EvenIm:EvenI m

OddISm:OddI(Succ m)

--------------------------------------------------------------

?_5:OddI(Succ(Succ(Succ m)))
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We prove it by the second introduction axiom of OddI, which is given by

GenOddI: all n(OddI n -> OddI(Succ(Succ n))).

So we enter (use "GenOddI") followed by (use "OddISm") and the proof is
finished. With (cdp) we take a look at the proof tree:

......allnc n8136(EvenI n8136 -> OddI 1 ->

all n(EvenI n -> OddI(Succ n) -> OddI(Succ(Succ(Succ n))))

-> OddI(Succ n8136)) by axiom Elim

......n

.....EvenI n -> OddI 1 -> all n(EvenI n -> OddI(Succ n) ->

OddI(Succ(Succ(Succ n)))) -> OddI(Succ n) by allnc elim

.....EvenI n by assumption EvenIn3363

....OddI 1 -> all n(EvenI n -> OddI(Succ n) ->

OddI(Succ(Succ(Succ n)))) -> OddI(Succ n) by imp elim

....OddI 1 by axiom Intro

...all n(EvenI n -> OddI(Succ n) -> OddI(Succ(Succ(Succ n)))) ->

OddI(Succ n) by imp elim

........all n(OddI n -> OddI(Succ(Succ n))) by axiom Intro

........Succ m

.......OddI(Succ m) -> OddI(Succ(Succ(Succ m))) by all elim

.......OddI(Succ m) by assumption OddISm3367

......OddI(Succ(Succ(Succ m))) by imp elim

.....OddI(Succ m) -> OddI(Succ(Succ(Succ m)))

by imp intro OddISm3367

....EvenI m -> OddI(Succ m) -> OddI(Succ(Succ(Succ m)))

by imp intro EvenIm3366

...all n(EvenI n -> OddI(Succ n) -> OddI(Succ(Succ(Succ n))))

by all intro

..OddI(Succ n) by imp elim

.EvenI n -> OddI(Succ n) by imp intro EvenIn3363

all n(EvenI n -> OddI(Succ n)) by all intro

Although the output is complex, we see that the first formula is derived by the
elimination axiom and the formulas all n(OddI n -> OddI(Succ(Succ n)))

and OddI 1 are derived by the introduction axioms. This goes well, because
we have used the elimination axiom exactly once and the introduction axioms
exactly twice.

3 Decorations

Minlog allows usage of decorated connectives →nc and ∀nc to indicate that
the premise or the quantified variable are not used computationally. Their
introduction and elimination rules are are like the ones for→ and ∀, except that
in the introduction rules →nc+ and ∀nc+ the premise or the quantified variable
are not used computationally. Since these are rather intuitive concepts, we do
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not develop the theory here but only explain their usage in Minlog.
Especially when dealing with decorated logical symbols computer support is
very useful. As just explained, we have to calculate the free computational
variables, if we want to use the rules →nc+ and ∀nc+. With computer support
this is trivial but to do it with pen and paper takes some time.

3.1 Non-computational Universal Quantifier

We first take a look at the non-computational universal quantifier. In Minlog it
is denoted by allnc and has the same syntactical rules as the normal universal
quantifier. In section 1.7 we have proven the formula ∀n(Pn→ Qn)→ ∀nPn→
∀nQn and now we would like to prove the decorated form ∀ncn (Pn → Qn) →
∀ncn Pn → ∀ncn Qn. In order to do this we load the library file nat.scm and
declare the predicates P and Q as we have done in section 1.7. Then we enter
the instruction

(set-goal "allnc n(P n -> Q n) -> allnc n P n -> allnc n Q n").

The output is as expected:

--------------------------------------------------------------

?_1:allnc n(P n -> Q n) -> allnc n P n -> allnc n Q n

By the command (assume "assumption1" "assumption2" "m") we move the
two premises and the variable m into the context. The output is similar to the
one we have had in section 1.7:

ok, we now have the new goal

assumption1:allnc n(P n -> Q n)

assumption2:allnc n P n

{m}

--------------------------------------------------------------

?_2:Q m

The difference is that the variable m is in curly brackets. This tells us that m

should not be used computationally. In our case both quantifiers in the assump-
tions are non-computational. Therefore we can enter (use "assumption1") fol-
lowed by (use "assumption2") without any problems and the proof is done.
The output after (cdp) is

.....allnc n(P n -> Q n) by assumption assumption12189

.....m

....P m -> Q m by allnc elim

.....allnc n P n by assumption assumption22190

.....m

....P m by allnc elim

...Q m by imp elim

..allnc n Q n by allnc intro
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.allnc n P n -> allnc n Q n by imp intro assumption22190

allnc n(P n -> Q n) -> allnc n P n -> allnc n Q n

by imp intro assumption12189

We see that the rules allnc elim and allnc intro occur. These are the rules
for the non-computational universal quantifier.
While dealing with the non-computational universal quantifier one should note
that Minlog just returns a warning if one applies a non-computational variable
to a computational universal quantifier. The proof can be continued normally.
As an example we try to prove the formula above where the first universal
quantifier is changed to a non-computational one:

(set-goal "all n(P n -> Q n) -> allnc n P n -> allnc n Q n")

Here we also start with (assume "assumption1" "assumption2" "m"). If we
now enter (use "assumption1"), we just get a warning:

Warning: nc-intro with cvar(s)

m

ok, ?_2 can be obtained from

assumption1:all n(P n -> Q n)

assumption2:allnc n P n

{m}

--------------------------------------------------------------

?_3:P m

Minlog does not stop the proof with an error message, because at this point
it is not clear whether usage of the rule was really incorect. If we finish the
“proof” with (use "assumption2") and enter (cdp), we will be informed that
the “proof” is incorect:

warning: allnc-intro with cvarm

.....all n(P n -> Q n) by assumption assumption12193

.....m

....P m -> Q m by all elim

.....allnc n P n by assumption assumption22194

.....m

....P m by allnc elim

...Q m by imp elim

..allnc n Q n by allnc intro

.allnc n P n -> allnc n Q n by imp intro assumption22194

all n(P n -> Q n) -> allnc n P n -> allnc n Q n

by imp intro assumption12193

Incorrect proof: nc-intro with computational variable(s)

m

Here we also see a difference between (cdp) and (dp). The command (dp)

would not inform the user that the proof is incorrect.
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3.2 Non-computational Implication

The non-computational implication is denoted by --> and has the same syntac-
tical rules as ->. As an application example we show that the non-computational
implication is transitive. Therefore we introduce three propositional variables
by (add-pvar-name "A" "B" "C" (make-arity)) and set the goal formula:

(set-goal "(A-->B)-->(B-->C)->A-->C")

As first step we move the three assumptions into the context with the com-
mand (assume "assumption1" "assumption2" "assumption3"). The output
of Minlog is

ok, we now have the new goal

{assumption1}:A --> B

assumption2:B --> C

{assumption3}:A

--------------------------------------------------------------

?_2:C

Similar to the non-computational variables we see that the non-computational
assumptions are in curly brackets. These assumptions can be only used in non-
computational parts of the proof. Whether we are in a non-computational or
not is not shown by Minlog and must be checked by the user.
In our example we first use assumption2, which is not in curly brackets, with
(use "assumption2"). According to assumption2 B implies C non-computationally.
Therefore while proving B we are in a non-computational part of the proof, hence
we can enter (use "assumption1") followed by (use "assumption3") which
finishes the proof. We see that the proof is correct, if we enter (cdp):

....B --> C by assumption assumption22198

.....A --> B by assumption assumption12197

.....A by assumption assumption32199

....B by impnc elim

...C by impnc elim

..A --> C by impnc intro assumption32199

.(B --> C) -> A --> C by imp intro assumption22198

(A --> B) --> (B --> C) -> A --> C by impnc intro assumption12197

The proof tree uses the new rules impnc intro and impnc elim.
It should be noted that one implication in the proven formula is computational
otherwise we could not prove the formula, because C could have computational
content and if every implication were non-computational, this content would
come from nothing.
Analogously to the non-computational universal quantifier Minlog only returns
a warning if one uses a non-computational assumption in a computational part.
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3.3 Decorated Predicates

The non-computational universal quantifier and implication can be used for the
definition on an inductively defined predicate. In section 2.3 we have defined
the predicate EvenI with the second introduction axiom

GenEvenI: all n(EvenI n -> EvenI(Succ (Succ n)))

This axiom can be changed to

GenEvenI: allnc n(EvenI n -> EvenI(Succ (Succ n)))

since heuristically one can say that the information on n is already given in
EvenI n. Compared to inductively defined predicate without decoration there
is not an essential change.
Also the definition of a non-computational inductively defined predicate is quite
similar to the definition of a computational one. The only change is that one
does not declare a name for the algebra of the predicate.
To give a good example we use the algebra of lists, which are introduced in
the library file list.scm. We would like to define the predicate RevI which
takes two lists as arguments and says that the first list reversed is the second
list. Therefore we load nat.scm and list.scm form the library. The list type
is defined with a type variable alpha as we have seen in section 2.1. We first
declare two variables xs and ys of type list alpha and one variable x of type
alpha. In list.scm also the infix notation :: for the constructor Cons alpha

is declared. For x ::(Nil alpha) we have the abbreviation x: and ++ denotes
the concatenation of two lists. The predicate revI is therefore defined by the
command:

(add-ids (list (list "RevI" (make-arity (py "list alpha")

(py "list alpha"))))

’("RevI(Nil alpha)(Nil alpha)" "InitRevI")

’("all xs,ys,x(RevI xs ys -> RevI(xs++x:)(x::ys))" "GenRevI"))

As an application we prove that RevI is symmetric. Hence we enter

(set-goal "all xs,ys(RevI xs ys -> RevI ys xs)").

After the command (assume "xs" "ys" "RevIxsys") the output is

ok, we now have the new goal

xs ys RevIxsys:RevI xs ys

--------------------------------------------------------------

?_2:RevI ys xs

Here we use the elimination rule for RevI xs ys to the goal formula by the in-
strution (elim "RevIxsys"). This is possible since RevI is non-computational.
Minlog gives
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ok, ?_2 can be obtained from

xs ys RevIxsys:RevI xs ys

--------------------------------------------------------------

?_4:all xs,ys,x(RevI xs ys -> RevI ys xs

-> RevI(x::ys)(xs++x:))

xs ys RevIxsys:RevI xs ys

--------------------------------------------------------------

?_3:RevI(Nil alpha)(Nil alpha)

back. The goal formula is easily proven by (use "InitRevI"). To prove the
second formula we move via

(assume "xs1" "ys1" "x" "RevIxs1ys1" "RevIys1xs1")

everything into the context and again use the elimination axiom for the assump-
tion RevIys1xs1 with (elim "RevIys1xs1"). The output is

ok, ?_5 can be obtained from

xs ys RevIxsys:RevI xs ys

xs1 ys1 x RevIxs1ys1:

RevI xs1 ys1

RevIys1xs1:RevI ys1 xs1

--------------------------------------------------------------

?_7:all xs,ys,x0(

RevI xs ys -> RevI(x::xs)(ys++x:)

-> RevI(x::xs++x0:)((x0::ys)++x:))

xs ys RevIxsys:RevI xs ys

xs1 ys1 x RevIxs1ys1:

RevI xs1 ys1

RevIys1xs1:RevI ys1 xs1

--------------------------------------------------------------

?_6:RevI(x:)((Nil alpha)++x:)

We know that :x and (Nil alpha)++x: are equal terms and Minlog also knows
it. Form InitRevI we get RevI(Nil alpha)(Nil alpha) and with GenRevI
this leads to RevI :x :x. Since Minlog does not recognize how to apply the
use command we enter

(use-with "GenRevI" (pt "(Nil alpha)") (pt "(Nil alpha)")

(pt "x") "InitRevI").

After this we get
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ok, ?_6 is proved. The active goal now is

xs ys RevIxsys:RevI xs ys

xs1 ys1 x RevIxs1ys1:

RevI xs1 ys1

RevIys1xs1:RevI ys1 xs1

--------------------------------------------------------------

?_7:all xs,ys,x0(

RevI xs ys -> RevI(x::xs)(ys++x:)

-> RevI(x::xs++x0:)((x0::ys)++x:))

back. RevI(x::xs)(ys++x:)->RevI(x::xs++x0:)((x0::ys)++x:)) has the
form of the axiom GenRevI. Therefore we move with (assume "xs2" "ys2" "x0"

"assumption1") everything but the last premise into the context and finish the
proof by

(use-with "GenRevI" (pt "x::xs2") (pt "ys2++x:") (pt "x0")).

Finally we take a look at the predicate RevI by (display-idpc "RevI") and
we see that RevI is non-computational:

RevI non-computational

InitRevI: RevI(Nil alpha)(Nil alpha)

GenRevI: all xs,ys,x(RevI xs ys -> RevI(xs++x:)(x::ys))

3.4 Leibniz Equality and Simplification

An important example of a non-computational inductively defined predicate is
the Leibniz equality. It is saved in Minlog by default and denoted by EqD. We
see its introduction axiom if we enter (display-idpc "EqD"):

EqD non-computational

InitEqD: allnc alpha^ alpha^ eqd alpha^

The system also uses the infix notation T1 eqd T2 instead of EqD T1 T2. Since
the type of the computational version of the Leibniz equality would be the unit
type each predicate, not only the non-computational ones, can be used in the
elimination axiom.
The characteristic property of the equality is ∀x,y(Eqxy → A(x)→ A(y)). This
perperty can be used conveniently in Minlog by the simp command. If we have
a formula FORMULA of the form T1 eqd T2, which is a Leibniz equality or an
abstraction of it, with the command

(simp FORMULA)

each term T1 in the current goal formula is replaced by T2. If FORMULA has
premises, Minlog requires also a proof of these premises. Formally the theorem
∀x,y(Eqxy → A(y)→ A(x)), which is obviously equivalent to the characteristic
property of the equality above, is used. The first premise Eqxy is already given
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and Minlog requires a proof of A(y).
As an example we prove for a natural number n and a function f : N→ N that
f(n) = n→ f(n) = f(f(n)) holds. Hence we enter

(set-goal "all f,n(f n eqd n -> f (f n) eqd f n)").

With (assume "f" "n" "fn=n") we move the variables and the premise into
the context and the new goal is:

ok, we now have the new goal

f n fn=n:f n eqd n

--------------------------------------------------------------

?_2:f(f n)eqd f n

Here we directly use (simp "fn=n"), which leads to the output

ok, ?_2 can be obtained from

f n fn=n:f n eqd n

--------------------------------------------------------------

?_3:f n eqd n

and the proof is finished by (use "fn=n").
It is also possible to use the other direction of the equality, i.e., the theorem
∀x,y(Eqxy → A(x)→ A(y)). One can do this by the command

(simp "<-" FORMULA).

In our proof above we could also use this command, even though it is not
expedient. Nevertheless, for demonstration purposes we show the output after
entering (simp "<-" "fn=n") instead of (simp "fn=n"):

ok, ?_2 can be obtained from

f n fn=n:f n eqd n

--------------------------------------------------------------

?_3:f(f(f n))eqd f(f n)

Each occurrence of n was replaced by f n.
It is not only possible to insert the name of an already known formula for
FORMULA. One can also write (pf EQUALITY) instead of FORMULA, where EQUALITY
has to be an abstraction of T1 eqd T2. In this case Minlog also requires a proof
of EQUALITY.

3.5 Examples of Inductively Defined Predicates

In this section we discuss disjunction, conjunction and the existential quantifier
in Minlog. We start with conjunction. In Minlog there are four versions of it:
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AndD with content of type yprod

InitAndD: Pvar1 -> Pvar2 -> Pvar1 andd Pvar2

AndL with content of type identity

InitAndL: Pvar1 -> Pvar2 --> Pvar1 andl Pvar2

AndR with content of type identity

InitAndR: Pvar1 --> Pvar2 -> Pvar1 andr Pvar2

AndNc non-computational

InitAndNc: Pvar1 --> Pvar2 --> Pvar1 andnc Pvar2

There is no AndU since the type of it would be the unit type and therefore AndU

and AndNc are equivalent. To use the introduction axiom of each conjuction one
also has the command (split). For the predicates above (split) and (intro

0) are synonyms.
Similar to conjunction the existential quantifier also has four versions:

ExD with content of type yprod

InitExD: all alpha^((Pvar alpha)alpha^ ->

exd alpha^0 (Pvar alpha)alpha^0)

ExL with content of type identity

InitExL: all alpha^((Pvar alpha)alpha^ -->

exl alpha^0 (Pvar alpha)alpha^0)

ExR with content of type identity

InitExR: allnc alpha^((Pvar alpha)alpha^ ->

exr alpha^0 (Pvar alpha)alpha^0)

ExNc non-computational

InitExNc: allnc alpha^((Pvar alpha)alpha^ -->

exnc alpha^0 (Pvar alpha)alpha^0)

Since usage of the elimination axiom of the existential quantifier is complex,
there is the command

(by-assume ASSUMPTION VAR NAME).

With this instruction the new variable VAR, which fulfils the existential state-
ment ASSUMPTION =: ∃xA(x), is introduced and the formula A(VAR) is saved in
the context with name NAME.
We demonstrate the usage of by-assume by proving ∀n(P (n) → Q(n)) →
∃nP (n)→ ∃nQ(n). Hence we enter

(set-goal "all n(P n -> Q n) -> exd n P n -> exd n Q n")

(assume "assumption1" "assumption2")

and the output is

ok, we now have the new goal

assumption1:all n(P n -> Q n)

assumption2:exd n P n

--------------------------------------------------------------

?_2:exd n Q n
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Here we use the by-assume command with

(by-assume "assumption2" "n" "assumption2Inst").

Minlog returns

ok, we now have the new goal

assumption1:all n(P n -> Q n)

n assumption2Inst:P n

--------------------------------------------------------------

?_5:exd n Q n

We see that assumption2 has been dropped. But it still exists and one could
use it. To prove the formula exd n Q n we use the introduction axiom of EqD

by writing (intro 0 (pt "n")) and Minlog shows

ok, ?_5 can be obtained from

assumption1:all n(P n -> Q n)

n assumption2Inst:P n

--------------------------------------------------------------

?_6:Q n

With (use "assumption1") and (use "assumption2Inst") we finishes the
proof.
In contrast to Ex and And the disjunction has five variations, because the type
of OrU is not the unit type but the Boolean algebra.

OrD with content of type ysum

InlOrD: Pvar1 -> Pvar1 ord Pvar2

InrOrD: Pvar2 -> Pvar1 ord Pvar2

OrR with content of type uysum

InlOrR: Pvar1 --> Pvar1 orr Pvar2

InrOrR: Pvar2 -> Pvar1 orr Pvar2

OrL with content of type ysumu

InlOrL: Pvar1 -> Pvar1 orl Pvar2

InrOrL: Pvar2 --> Pvar1 orl Pvar2

OrU with content of type boole

InlOrU: Pvar1 --> Pvar1 oru Pvar2

InrOrU: Pvar2 --> Pvar1 oru Pvar2

OrNc non-computational

InlOrNc: Pvar1 -> Pvar1 ornc Pvar2

InrOrNc: Pvar2 -> Pvar1 ornc Pvar2

The axioms of the disjuctions can be applied straightforwardly so there are no
special commands for the disjuction.
For each of these inductively defined predicates there are also interactive versions
andi, exi and ori. These are not new inductively defined predicates but the
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system takes the suitable version.
For example, if we want to prove the formula

(A→ B ∧ C)→ (A→ B) ∧ (A→ C),

we can do this by entering

(set-goal "(A -> B andi C) -> (A -> B) andi (A -> C)").

Minlog recognizes that B and C could be computational and therefore it replaces
andi by andd:

--------------------------------------------------------------

?_1:(A -> B andd C) -> (A -> B) andd (A -> C)

The proof of this formula in Minlog is left as an exercise.

4 Terms

4.1 define Command

Expressions can be abbreviated by the define command. These expressions do
not have to be terms. With define one can also save formulas, types or just
strings. The instruction has the form

(define STRING EXPR).

Instead of STRING one writes an arbitrary string and thus ensures that a later
usage of STRING will be replaced by EXPR.
We will use the define command to abbreviate terms. For example, if we want
to define the natural number 4, we can do this by

(define four (pt "Succ(Succ(Succ(Succ 0)))"))

but after entering (pp four) Minlog displays 4 and not Succ(Succ(Succ(Succ
0))), since the decimal representation of natural numbers is already imple-
mented. The extracted term of a proof will become long. Therefore the define

command ist very useful.
But if one would like to use some formulas or types several times, it can be
reasonable to set them with the define command. Examples for this are

(define Goal (pf "(A -> B -> C) -> ((C -> A) -> B) -> A -> C"))

or

(define sequences (py "nat=>alpha")).

It should be noted that one can overwrite defined strings whitout any problems
and Minlog not even returns a warning.
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4.2 Program Constants

Program constants or programmable constants are an important part of terms
in Minlog. There are two steps to introduce program constants in Minlog. First
one declares the name NAME and the type TYPE of the program constant by the
command

(add-program-constant NAME TYPE).

We take the addition on the natural numbers as example. In the file nat.scm

it is declared by

(add-program-constant "NatPlus" (py "nat=>nat=>nat")).

In the second step one adds the computation rules of the program constant by
the command

(add-computation-rule TERM1 TERM2).

A computation rule has the form

D~P = M

where ~P is a list of patterns built from dictinct variables and constants, and M
is a term with no more free variables than those in ~P . In the instruction above
TERM1 should be replaced by D~P and TERM2 by M . In the case of the addition
on the natural numbers we write

(add-computation-rule (pt "NatPlus n Zero") (pt "n"))

(add-computation-rule (pt "NatPlus n (Succ m)")

(pt "Succ (NatPlus n m)")).

There is also an abbreviation by the command

(add-computation-rules

"NatPlus n Zero" "n"

"NatPlus n (Succ m)" "Succ(NatPlus n m)").

This command does the same as the two commands above but it is shorter, since
one does not have to write pt and add-computation-rule for each computation
rule.
If we want to see the computation rules of a program constant, we have the
command

(display-pconst LIST)

which shows us the rules for the program constants in the List LIST. In our
case entering (display-pconst "NatPlus") after loading nat.scm leads to the
output

30



NatPlus

comprules

0 n+0 n

1 n+Succ m Succ(n+m)

rewrules

0 0+n n

1 Succ n+m Succ(n+m)

2 n+(m+l) n+m+l

We also see the rewrite rules of the program constant, which we consider later.
To remove the program constant NAME we can use the instruction

(remove-program-constant NAME).

Minlog removes the name of the program constant and deletes each computation
rule of it. But one should be careful with a deleted program constant. The
theorems about the deleted program constant are not removed. Therefore, if
a new program constant with the same name is introduced, Minlog assumes
that the theorems of the old program constant also holds for the new one. But
obviously this does not have to be true.

4.3 Examples of Program Constants

The boolean operators andb, orb and impb are program constants which often
occur. They have the names AndConst, OrConst and ImpConst and also the
infix notation is declared in Minlog. The computation rules are the following:

AndConst

comprules

0 True andb boole^ boole^

1 boole^ andb True boole^

2 False andb boole^ False

3 boole^ andb False False

OrConst

comprules

0 True orb boole^ True

1 boole^ orb True True

2 False orb boole^ boole^

3 boole^ orb False boole^

ImpConst

comprules

0 False impb boole^ True

1 True impb boole^ boole^

2 boole^ impb True True

Another important program constant is the recursion operator. In Minlog it is
denoted by
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(Rec ALG=>TYPE).

Strictly speaking, this is the recursion operator from the algebra ALG into the
typ TYPE. In the next section we see a term with the recursion operator. At
this point we would like to consider the type of the recursion operator. The
command

(term-to-type TERM)

gives the type of an general term TERM back. To see the type of the recursion
operator form the natural numbers into a type alpha we write

(pp (term-to-type (pt "(Rec nat=>alpha)")))

and we get the expected output:

nat=>alpha=>(nat=>alpha=>alpha)=>alpha

The last example in this section is the decidable equality for objects of a finitary
algebra. The decidable equality for a finitary algebra is automatically imple-
mented when the algebra is defined. It is denoted by = and the computation
rules are so deeply implemented in Minlog that we can not see them explicitly.

4.4 Abstraction and Application

In Minlog the λ abstraction of a variable is denoted is denoted by putting these
variables in square brackets and separated by commas in front of the term. The
application of a term N to a term M is just denoted by M N. To show this in detail
we define the addition of the natural numbers as a term of type N→ N→ N by
using the recursion operator:

(define Plus (pt "[n,m](Rec nat=>nat) n m ([n0,n1]Succ n1)"))

If we would like to apply an already defined term TERM1 to another term TERM2,
we can use the command

(make-term-in-app-form TERM2 TERM1).

For example the application of 1 to the term Plus can be entered by

(make-term-in-app-form Plus (pt "1")).

We also can normalize this term with nt, which is discussed two sections later,
by entering

(pp (nt (make-term-in-app-form Plus (pt "1"))))

and get just Succ as output. This is consistent with the fact that addition with
1 gives the successor.
The abstraction of a variable VAR from a defined term TERM is implemented by
the command

(make-term-in-abst-form VAR TERM).

So, if we enter something like the instruction (pp (make-term-in-abst-form

(pv "n") (pt "n1"))), the output is [n]n+1.
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4.5 Boolean Terms as Formulas

In Minlog a boolean term b can be also identified with the formula b eqd True.
So Minlog easily understands commands like

(set-goal "all boole1,boole2(boole1 andb boole2 -> boole1)").

The identification of a boolean term with a formula is done by the theorems
EqDTrueToAtom und AtomToEqDTrue, which are saved in Minlog by default:

AtomToEqDTrue all boole^(boole^ -> boole^ eqd True)

EqDTrueToAtom all boole^(boole^ eqd True -> boole^)

While working with boolean variables as formulas one often needs the theorem

Truth T

which says T eqd T. With this theorem one easily can prove boolean terms
which normalizes to T.

4.6 Normalisation

In Minlog two terms are considered equal if they have a common reduct w.r.t.
the computation and rewrite rules. This equality is also implemented in Minlog
and in this chapter we take a look at the conversion rules in Minlog.
Program constants are defined by their computation rules. In the system the
two sides of the rules are automatically identified. The computation rules are
also saved as theorems. The X-th computation rule of the program constant NAME
has the name NAMEXCompRule. This is one reason why the rules are numbered
in the output of display-pconst. The computation rules do not appear in the
output of search-about. But if one would like to see these rules, too, one can
expand search-about by the string ’all. So we can explicitly search for the
computation rules of boolean operators by the command

(search-about ’all "CompRule" "Const").

The output is the following list:

Theorems with name containing CompRule and Const

NegConst1CompRule

negb False eqd True

NegConst0CompRule

negb True eqd False

OrConst3CompRule

all boole^ (boole^ orb False)eqd boole^

OrConst2CompRule

all boole^ (False orb boole^)eqd boole^

OrConst1CompRule

all boole^ (boole^ orb True)eqd True

OrConst0CompRule
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all boole^ (True orb boole^)eqd True

ImpConst2CompRule

all boole^ (boole^ impb True)eqd True

ImpConst1CompRule

all boole^ (True impb boole^)eqd boole^

ImpConst0CompRule

all boole^ (False impb boole^)eqd True

AndConst3CompRule

all boole^ (boole^ andb False)eqd False

AndConst2CompRule

all boole^ (False andb boole^)eqd False

AndConst1CompRule

all boole^ (boole^ andb True)eqd boole^

AndConst0CompRule

all boole^ (True andb boole^)eqd boole^

No global assumptions with name containing CompRule and Const

These theorems can be used with the simp command.
Often one would like to normalize a term TERM completely. In Minlog one does
this with the instruction

(nt TERM).

Of course, this is not always possible and therefore this instruction could lead
to an infinite loop, which had to be stoped manually by the user.
In section 4.4 we defined the term PLUS and now we apply this term to two
natural numbers and normalize it. So we enter

(define 7+2 (pt "([n,m](Rec nat=>nat) n m ([n0,n1]Succ n1))7 2"))

(pp (nt 7+2))

and indeed the output is 9.
Normalization in a proof is also possible with the command

(ng NAME).

Each term in the assumption with name NAME is normalized by this instruction.
If NAME is replaced by #t, each term in the goal formula is normalized and if
one just writes (ng), each term in the goal and in the context is normalized.
Since the normalisation algorithm does not need to terminate, it is sometimes
better just to do β and η conversion. With

(term-to-beta-eta-nf TERM)

the term TERM is normalized referring to β and η conversion. As example the
output of (pp (term-to-beta-eta-nf (pt "([n]n+2)1"))) is 1+2.
It is also possible to add new rewrite rules, which are used by the normalisation
with nt or ng. By entering the command

(add-rewrite-rule TERM1 TERM2)
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Minlog adds the global assumption that TERM1 and TERM2 are equal. If one uses
add-rewrite-rule after the proof that TERM1 is equal to TERM2 this rewrite
rule is added as a theorem and is not added as an assumption. In both
cases this rule is always used by the commands nt and ng and appears in
the output of display-pconst. We have already seen this in the output of
(display-pconst "NatPlus") after loading nat.scm:

NatPlus

comprules

0 n+0 n

1 n+Succ m Succ(n+m)

rewrules

0 0+n n

1 Succ n+m Succ(n+m)

2 n+(m+l) n+m+l

Similar to the computation rules the X-th rewrite rule is saved with the name
NAMEXRewRule.

4.7 The Extracted Term

After proving a formula in Minlog one can access the computational content of
the proof by the command

(proof-to-extracted-term).

As an example we prove that for every even natural number n there exists a
natural number m such that m + m = n holds. Here we use the decorated
version of the predicate EvenI, which is implemented by

(add-ids

(list (list "EvenI" (make-arity (py "nat")) "algEvenI"))

’("EvenI 0" "InitEvenI")

’("allnc n(EvenI n -> EvenI(Succ (Succ n)))" "GenEvenI")).

To prove the statement above we set

(set-goal "allnc n(EvenI n -> exl m m+m=n)").

Here we use exl, since the equality m+m=n does not have any computational
content, and we will use n only non-computationally, therefore it is bounded
with an nc quantifier.
To prove the goal formula we first move with (assume "n" "EvenIn") the vari-
able n and the premise into the context and we enter (elim "EvenIn") to use
the elimination axiom of EvenI. For each introduction axiom of EvenI we get
two new goal formulas:

ok, ?_2 can be obtained from
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{n} EvenIn:EvenI n

--------------------------------------------------------------

?_4:allnc n(EvenI n -> exl m m+m=n -> exl m m+m=Succ(Succ n))

{n} EvenIn:EvenI n

--------------------------------------------------------------

?_3:exl m m+m=0

We prove the goal formula exl m m+m=0 by using the introduction axiom of
ExL with the term 0. So we enter (intro 0 (pt "0")) and prove the equality
0+0=0 with (use "Truth"). For proving the goal formula ?_4 we first move with
(assume "n1" "EvenIn1" "IH") everthing into the context. From the induc-
tion hypotheses IH we get m with m+m=n1 by the command (by-assume "IH"

"m" "IHInst"). For proving the goal formula exl m m+m=Succ(Succ n) we
first enter (intro 0 (pt "m+1")), which leads to the output

ok, ?_9 can be obtained from

{n} EvenIn:EvenI n

{n1} EvenIn1:EvenI n1

m IHInst:m+m=n1

--------------------------------------------------------------

?_10:m+1+(m+1)=Succ(Succ n1)

After normalization by (ng) the new goal is exactly IHInst. So we finish the
proof with (use "IHInst").
Now we get the extracted term by the command

(define eterm (proof-to-extracted-term)).

The output after (pp eterm) is hardly readable:

[algEvenI3985]

(Rec algEvenI=>nat)algEvenI3985(([n^3986]n^3986)0)

([algEvenI3991,n3989]

([n3988,(nat=>nat)_3987](nat=>nat)_3987 n3988)n3989

([m]([n^3990]n^3990)(m+1)))

But the normalized form of it is more readable. Therefore we enter (pp (nt

eterm)) and get

[algEvenI0](Rec algEvenI=>nat)algEvenI0 0([algEvenI1]Succ)

back. It is always recommended to normalize an extracted term. We see that
there is no variable for the algebra algEvenI declared, which expands the ex-
tracted term. So we define f as a variable of type algEvenI. The new normalized
term is
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[f0](Rec algEvenI=>nat)f0 0([f1]Succ)

The occurrence of the recursions operator matches with the fact that we used
the elimination axiom of EvenI exactly once. The type of the extracted term
algEvenI=>nat is also plausible, since for a witness that n is even we get a
natural number m with m+m=n.

5 Totality

5.1 Implementation of Totality

To each algebra ALG, which is defined in Minlog, one can add the totality pred-
icate by the instruction

(add-totality ALG).

The newly added predicate has the name TotalAlg, where the first letter of
ALG is a capital letter.
In list.scm the totality of lists are introduced. With (display-idpc "TotalList")

we take a look at the introduction axiom:

TotalList with content of type list

TotalListNil: TotalList(Nil alpha)

TotalListCons: allnc alpha^(

Total alpha^ ->

allnc (list alpha)^0(

TotalList(list alpha)^0 -> TotalList(alpha^ ::(list alpha)^0)))

We see that the premise of TotalListCons is the totality of alpha. This is the
absolute totality. A generalisation of absolute totality is relative totality. In
Minlog it can be introduced by

(add-rtotality ALG).

It is denoted by RTotalALG. We take a look at relative totality of list by the
instruction (display-idpc "RTotalList") and get the output

RTotalList with content of type list

RTotalListNil: (RTotalList [...])(Nil alpha)

RTotalListCons: allnc alpha^(

(Pvar alpha)_356 alpha^ ->

allnc (list alpha)^0(

(RTotalList [...])(list alpha)^0 ->

(RTotalList [...])

(alpha^ ::(list alpha)^0)))

For better readability

(RTotalList (cterm (alpha^1) (Pvar alpha)_356 alpha^1))
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is replaced by (RTotalList [...]). As we see, relative totality has a type
variable alpha and also a predicate variable (Pvar alpha)_356. Compared to
absolute totality, relative totality has this predicate variable instead of totality
of alpha in the premise of TotalListCons. Relative totality is a generalization
of absolute totality. Each totality of another type is replaced by a predicate vari-
able. If one inserts for each predicate variable in the relative totality predicate
the predicate µX(∀xXx), one gets structural totality, which is also a variation
of totality.

5.2 Implicit Representation of Totality

The reader may have seen in previous sections that some variable names in the
output of Minlog are equipped with ^. Now we see why. For each quantifica-
tion over a variable without ^ Minlog adds implicitly the assumption that this
variable is total. Therefore expressions like ∀xA and ∀ncx A are abbreviations
for ∀ncx̂ (Total x̂ → A) and ∀ncx̂ (Total x̂ →nc A). The character ^ after the
variable name indicates that the variable does not have to be total. In Minlog
this abbreviation is introduced by two theorems

AllncTotalIntro allnc alpha^(Total alpha^ --> (Pvar alpha)alpha^)

-> allnc alpha(Pvar alpha)alpha

AllTotalIntro allnc alpha^(Total alpha^ -> (Pvar alpha)alpha^)

-> all alpha(Pvar alpha)alpha

and it is eliminated by

AllncTotalElim allnc alpha(Pvar alpha)alpha ->

allnc alpha^(Total alpha^ --> (Pvar alpha)alpha^)

AllTotalElim all alpha(Pvar alpha)alpha ->

allnc alpha^(Total alpha^ -> (Pvar alpha)alpha^)

For each version of the existential quantifier there are the introduction axioms
for the totality abbreviation

ExDTotalIntro

exr alpha^(Total alpha^ andd (Pvar alpha)alpha^) ->

exd alpha(Pvar alpha)alpha

ExLTotalIntro

exr alpha^(Total alpha^ andl (Pvar alpha)^’ alpha^) ->

exl alpha(Pvar alpha)^’ alpha

ExRTotalIntro

exr alpha^(TotalNc alpha^ andr (Pvar alpha)alpha^) ->

exr alpha(Pvar alpha)alpha

ExNcTotalIntro

exnc alpha^(Total alpha^ andnc (Pvar alpha)alpha^) ->

exnc alpha(Pvar alpha)alpha

and also the elimination axioms of the totality abbreviation.
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ExNcTotalElim

exnc alpha (Pvar alpha)alpha ->

exnc alpha^(Total alpha^ andnc (Pvar alpha)alpha^)

ExRTotalElim

exr alpha (Pvar alpha)alpha ->

exr alpha^(TotalMR alpha^ alpha^ andr (Pvar alpha)alpha^)

ExLTotalElim

exl alpha (Pvar alpha)^ alpha ->

exr alpha^(Total alpha^ andl (Pvar alpha)^ alpha^)

ExDTotalElim

exd alpha (Pvar alpha)alpha ->

exr alpha^(Total alpha^ andd (Pvar alpha)alpha^)

Of course, these theorems only can be used if the corresponding (absolute)
totality predicate is defined. But even if the totality of the corresponding type
is not defined, one can use variables with and without ^. As long as the totality
of this type is not defined, there is no semantical difference between x and x^.
Nevertheless for example, the system never allows a specialisation of a formula
∀xA to a variable x̂.

5.3 Totality of Program Constants

For proving that a program constant PCONST is total there is the command

(set-totality-goal PCONST).

The computer generates as goal formula the totality of this program constant.
In the file nat.scm the totality of the addition on the natural numbers is proven.
This is done by

(set-totality-goal "NatPlus").

Minlog gives the detailed goal

--------------------------------------------------------------

?_1:allnc n^(TotalNat n^ ->

allnc n^0(TotalNat n^0 -> TotalNat(n^ +n^0)))

back. To prove this we move with (assume "n^" "Tn" "m^" "Tm") everything
into the context and prove TotalNat(n^ +m^) by the elimination axiom for Tm.
Therefore we enter (elim "Tm") and get the output

ok, ?_2 can be obtained from

{n^} Tn:TotalNat n^

{m^} Tm:TotalNat m^

--------------------------------------------------------------

?_4:allnc n^0(TotalNat n^0 ->
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TotalNat(n^ +n^0) -> TotalNat(n^ +Succ n^0))

{n^} Tn:TotalNat n^

{m^} Tm:TotalNat m^

--------------------------------------------------------------

?_3:TotalNat(n^ +0)

After normalisation with (ng #t) the first goal is exactly the assumption Tn. So
we prove it with (use "Tn"). For the second goal we enter first the instruction
(assume "l^" "Tl" "IH") to move the premises and the variables into the
context. This leads to the output:

ok, we are back to goal

{n^} Tn:TotalNat n^

{m^} Tm:TotalNat m^

{l^} Tl:TotalNat l^

IH:TotalNat(n^ +l^)

--------------------------------------------------------------

?_5:TotalNat(n^ +Succ l^)

When we normalise the goal formula with (ng #t), we get the new goal TotalNat(Succ(n^ +l^)).
Here we use the totality of the successor function, which is exactly the second
introduction axiom of TotalNat. So we enter (use "TotalNatSucc"). Minlog
requires a proof that the argument of Succ is total, i.e. TotalNat(n^ +l^).
This is done by (use "IH") and the proof is finished.
After proving the totality of a program constant PCONST one can save the totality
by

(save-totality).

This instruction saves the totality of PCONST as a theorem with name PCONSTTotal.

5.4 Totality of Boolean Terms

For total boolean terms the logical connectives →,∧ and ∨ are equvialent to
the boolean once impb, andb and orb. Especially for andb this fact is also
implemented in Minlog. Therefore one can use the command (split) also to
prove a formula of the form a andb b, where a and b are total boolean terms.
In the other direction, one can prove a or b directly by using the assumption a

andb b. For example the goal

all boole1,boole2(boole1 andb boole2 -> boole1)

is easily proven by

(assume "boole1" "boole2" "assumption")

(use "assumption").
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To demonstrate the usage of (split) we prove the goal

all boole1,boole2(boole1 andb boole2 -> boole2 andb boole1).

In Minlog this is done by entering

(assume "boole1" "boole2" "assumption")

(split)

(use "assumption")

(use "assumption").

Here it is important that both variables are total. The statement is also true if
only one of both variables is total. But then (split) and (use "assumption")

does not lead to a correct proof and one has to prove it in another way.
For total variables of a finitary algebra the decidable equality is equivalent to
the Leibniz equality. In Minlog this is not automatically implemented such that
one has to prove it for each algebra individually. In the library file this is done
for some algebras. In nat.scm the theorem NatEqToEqD and in list.scm the
theorems ListBooleEqToEqD, ListNatEqToEqD and ListListNatEqToEqD are
proven.
If for an finitary algebra ALG the theorem

all a,b(a = b -> a eqd b)

is saved with the name ALGEqToEqD, then we also can use formulas of the form
T1 = T2 instead of T1 eqd T2 as arguments of simp, if T1 and T2 are total
terms with type ALG. If such a theorem is not saved, the theorem ALGEqToEqD

becomes a global assumption by the usage of simp as above.

5.5 Induction

To use the abbreviation of totality efficiently there is the command

(ind).

This command can be used if the goal formula has the form ∀xA(x). Minlog
applies the elimination axiom of the totality of x to the predicate {x|A(x)}
and the premises of this axiom become the new goal formulas. An extended
command of ind is

(ind TERM)

for a total term TERM. This instruction can be applied to each goal formula
A(TERM). In this case the elimination axiom of the totality of TERM is applied
to {x|A(x)}.
As an example we prove, that each total natural number is even or odd. There-
fore we load the file nat.scm and define EvenI and OddI as in section 2.3 and
2.4. To set the goal we enter

(set-goal "all n (EvenI n ord OddI n)").
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Of course, here we use the computational disjunction OrD since EvenI and OddI

have computational content. After setting the goal formula we directly use
induction on n. Therefore we enter (ind) and get

ok, ?_1 can be obtained from

n3987

--------------------------------------------------------------

?_3:all n(EvenI n ord OddI n

-> EvenI(Succ n) ord OddI(Succ n))

n3987

--------------------------------------------------------------

?_2:EvenI 0 ord OddI 0

back. The goal ?_2 holdes because of EvenI 0. So we enter (intro 0) twice
and this goal is proven. For the goal ?_3 we first move with (assume "n" "IH")

the variable and the premise into the context and then use the elimination axiom
of OrD by the command (elim "IH"). Then Minlog requires twice a proof
of EvenI(Succ n) ord OddI(Succ n) once with the assumption EvenI n and
once with the assumption OddI n.

ok, ?_5 can be obtained from

n3990 n IH:EvenI n ord OddI n

--------------------------------------------------------------

?_7:OddI n -> EvenI(Succ n) ord OddI(Succ n)

n3990 n IH:EvenI n ord OddI n

--------------------------------------------------------------

?_6:EvenI n -> EvenI(Succ n) ord OddI(Succ n)

If EvenI n holds, we prove Odd(Succ n). Therefore we enter (assume "Evenn")

followed by (intro 1). The formula OddI(Succ n) can be proven by using the
elimination axiom of (EvenI n) by (elim "Evenn"). The output of Minlog is

ok, ?_9 can be obtained from

n3996 n IH:EvenI n ord OddI n

Evenn:EvenI n

--------------------------------------------------------------

?_11:all n(EvenI n -> OddI(Succ n)

-> OddI(Succ(Succ(Succ n))))

n3996 n IH:EvenI n ord OddI n

42



Evenn:EvenI n

--------------------------------------------------------------

?_10:OddI 1

OddI 1 is the first introduction axiom of OddI and so we prove it with (intro

1). The goal ?_11 follows from the second introduction axiom of OddI. We just
enter (assume "n1" "Evenn1") and (use "GenOddI") and it is proven. So the
case EvenI n is done. If OddI n holds, the proof is done analogously:

(assume "Oddn")

(intro 0)

(elim "Oddn")

(use "GenEvenI")

(intro 0)

(assume "n1" "Oddn1")

(use "GenEvenI")

As normalized extracted term we get

[n0]

(Rec nat=>algEvenI ysum algOddI)n0

((InL algEvenI algOddI)CInitEvenI)

([n1,(algEvenI ysum algOddI)_2]

[if (algEvenI ysum algOddI)_2

([algEvenI3]

(InR algOddI algEvenI)

((Rec algEvenI=>algOddI)algEvenI3 CInitOddI

([n4,algEvenI5]CGenOddI(Succ n4))))

([algOddI3]

(InL algEvenI algOddI)

((Rec algOddI=>algEvenI)algOddI3(CGenEvenI 0 CInitEvenI)

([n4,algOddI5]CGenEvenI(Succ n4))))])

The first recursion operator corresponds to the elimination axiom of the totality,
which we used with (ind). The other two recursion operators come from the
elimination of EvenI n and OddI n. The elimination of EvenI n ord OddI n

with the command (elim "IH") provides a recursion operator on the sum of
types. In the normalized extraced term this occurs as if. In Minlog if denotes
the case operator. For a sum of types the case operator and the recursion
operator are program constants with the same computational rules and Minlog
uses the case operator, since it is simpler. In the next section we take a deeper
look on the case operator.

5.6 Case Distinction

In a proof by induction it often occurs that one does not need the induction
hypothesis or there is not even an induction hypothesis. For example, we have
the last case for the boolean totality. The elimination axiom of the boolean
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totality is ∀b(TBb → P tt → Pff → Pb). As we see, this is just case distinction
by the two cases b = tt and b = ff. But also for total natural numbers there are
formulas which can be proven just by distinction between the zero case and the
successor case. As example we take the (modified) predecessor function on the
natural numbers, which is a program constant Pred given by the computation
rules Pred 0 := 0 and Pred Sn := n. One way of proving that this program
constant is total, i.e. ∀n(TNn→ TN(Pred n)), is by using the elimination axiom
of totality. In Minlog this proof is done as follows:

(set-totality-goal "Pred")

(use "AllTotalElim")

(ind)

(intro 0)

(use "AllTotalIntro")

(assume "n^" "Tn^" "Spam")

(use "Tn^")

After entering (use "AllTotalIntro") we get the output

ok, ?_4 can be obtained from

n4149

--------------------------------------------------------------

?_5:allnc n^(TotalNat n^ -> TotalNat(Pred n^)

-> TotalNat(Pred(Succ n^)))

but the premise TotalNat(Pred n^) is not used in the proof. As extraced term
we have

[n0][if n0 0 ([n1]n1)]

which do not have a recursion operator, although we have used the command
(ind). Therefore we rather expect an extracted term like

[n0](Rec nat=>nat) n0 0 ([n1,n2]n1).

But, since we have not used the induction hypothesis, the bounded variable n2

does not appear anywhere else. In such cases the recursion operator can be
replaced by the simpler case operator. In Minlog this is done automatically by
the normalisation of such a term. The case operator is denoted by [if ...],
where ... stands for the arguments of the case operator.
If one just would like to do case distinction on a total variable, there is the
instruction

(cases),

which are analogously used as (ind). We have also the expansion

(cases TERM)
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of the cases command to do case distinction on a total term TERM. So we can
also prove the totality of Pred with cases:

(set-totality-goal "Pred")

(use "AllTotalElim")

(cases)

(intro 0)

(use "AllTotalIntro")

(assume "n^" "Tn^")

(use "Tn^")

The proof is almost similar but after (use "AllTotalIntro") we have the
output

ok, ?_4 can be obtained from

n4312

--------------------------------------------------------------

?_5:allnc n^(TotalNat n^ -> TotalNat(Pred(Succ n^)))

Here the induction hypothesis TotalNat(Pred n^) does not occur as premise.
One often uses cases for a variable whose algebra just have constructor types
of the form κ(ξ) = ~σ → ξ. This is the case for the boolean algebra and the
sum algebra. But also for the type product the case command is useful, even
though there is only one case. As an educational example we define the program
constant sort, which rearranges a pair of natural numbers such that the smaller
number is on the left-hand side. In Minlog we do this by the instruction

(add-program-constant "sort"

(py "(nat yprod nat)=>(nat yprod nat)"))

(add-computation-rules

"sort (n pair m)" "[if (m<n) (m pair n) (n pair m)]")

We declare x as a variable of type nat yprod nat and then we enter the goal
formula

(set-goal "all x lft(sort x) <= rht(sort x)")

Here we directly use the command (cases) and Minlog shows all possible cases
how x can be built. There is only the case x = n pair m for total natural
numbers n and m. Therefore the output is

ok, ?_1 can be obtained from

x4406

--------------------------------------------------------------

?_2:all n,n0 lft(sort(n pair n0))<=rht(sort(n pair n0))
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and we have reached that x is decomposed. Now we enter (assume "n" "m")

and normalize the goal formula by (ng). Since sort is defined by case distinction
on m<n, we also use case distinction on m<n for the proof and write therefore
(cases (pt "m<n")). So we get two new goals:

ok, ?_4 can be obtained from

x4414 n m

--------------------------------------------------------------

?_6:(m<n -> F) ->

lft[if False (m pair n) (n pair m)]

<=rht[if False (m pair n) (n pair m)]

x4414 n m

--------------------------------------------------------------

?_5:m<n -> lft[if True (m pair n) (n pair m)]

<=rht[if True (m pair n) (n pair m)]

In each case the term m<n was already replaced. After (assume "case1") and
ng we get for the first case:

ok, the normalized goal is

x4430 n m case1:m<n

--------------------------------------------------------------

?_8:m<=n

We prove this with the theorem NatLtToLe: all n,m(n<m -> n<=m), which is
implemented in nat.scm. So we enter (use "NatLtToLe") followed by (use "case1").
The second case is analogously proven. Here we need the theorem NatNotLtToLe:

all n,m((n<m -> F) -> m<=n) to get n<=m from the assumption m<n -> F.
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