A material interpretation of maximal ideals in $\mathbb{Z}[X]$

Franziskus Wiesnet

May 6, 2023

Abstract

This article is about a constructive characterization of the maximal ideal in $\mathbb{Z}[X]$. First, a classical formulation of the theorem and a proof are given, which is transformed into a constructive proof.

Keywords: material interpretation, constructive algebra, program extraction

Theorem 1. Let $M \subseteq \mathbb{Z}[X]$ be a maximal ideal. Then there is a prime number p with $p \in M$.
Proof. If $X \notin M$, there is some $g \in \mathbb{Z}[X]$ with $g X-1 \in M$ because M is a maximal ideal. $g X-1$ is not constant as the constant coefficient is -1 and g cannot be 0 . Hence, in both cases ($X \in M$ and $X \notin M)$ there is some non constant $f \in M$. Let d be the leading coefficient of f.

We now assume that there is no prime number p with $p \in M$. As M is a maximal and hence a prime ideal, it follows $M \cap \mathbb{Z}=\{0\}$. Hence the canonical homomorphism $\mathbb{Z} \rightarrow \mathbb{Z}[X] / M$ is injective and induces a ring extension $\mathbb{Z}\left[d^{-1}\right] \rightarrow \mathbb{Z}[X] / M$. This is an integral ring extension with the integral polynomial $d^{-1} f$. As $\mathbb{Z}[X] / M$ is a field, also $\mathbb{Z}\left[d^{-1}\right]$ must be field. This is not possible.

Lemma 1. Let $f, g \in \mathbb{Z}[X]$ be given and $d \neq 0$ be the leading coefficient of f. Then there is $k \in \mathbb{N}$ and $h \in \mathbb{Z}[X]$ such that $\operatorname{deg}\left(d^{k} g+h f\right)<\operatorname{deg}(f)$

Proof. Let $m:=\operatorname{deg}(f)$ and $n:=\operatorname{deg}(g)$. For fix m use induction on n. If $n<m$, we take $k:=0$ and $h:=0$. Otherwise, let c be the leading coefficient of g. Then $\operatorname{deg}\left(d g-c x^{n-m} f\right)<n$, hence we get k^{\prime} and h^{\prime} such that $\operatorname{deg}\left(d^{k^{\prime}}\left(d g-c x^{n-m} f\right)+h^{\prime} f\right)<m$. Hence, $k:=k^{\prime}+1$ and $h:=h^{\prime}-d^{k^{\prime}} c x^{n-m}$ do the trick.

Definition 1. Let R be a ring. For a subset $M \subseteq R$ and a function $\nu: R \rightarrow R$, we say that (M, ν) is an EXPlicit maximal ideal if M is an ideal, $1 \notin M$ and $a \nu(a)-1 \in M$ for all $a \in R \backslash M$.

Furthermore, we say that there is Evidence that (M, ν) is not an Explicit maximal IDEAL if one of the following cases holds:

- $0 \notin M$,
- there are $a, b \in M$ with $a+b \notin M$,
- there are $\lambda \in R$ and $a \in M$ with $\lambda a \notin M$,
- $1 \in M$, or
- there is $a \in R \backslash M$ with $a \nu(a)-1 \notin M$.

Lemma 2. Let R be a ring, $M \subseteq R, \nu: R \rightarrow R$ and $a_{1}, \ldots, a_{n} \in R$ with $a_{1} \ldots a_{n} \in M$ be given. Then, either there is an $a_{i} \in M$, or there is evidence that (M, ν) is not an explicit maximal ideal. In heuristic terms: Each explicit maximal ideal is an explicit prime ideal.

Proof. Induction over n. For $n=0$ it follows $1 \in M$, which is evidence that (M, ν) is not an explicit maximal object. For the induction step, let $a_{1} \ldots a_{n} a_{n+1} \in M$. If $a_{n+1} \in M$, we are done. Otherwise, either $a_{n+1} \nu\left(a_{n+1}\right)-1 \in M$ or there is evidence that (M, ν) is not an explicit maximal ideal. This and $a_{1} \ldots a_{n} a_{n+1} \in M$ imply that either $a_{1} \ldots a_{n} a_{n+1} \nu\left(a_{n+1}\right),-a_{0} \ldots a_{n} a_{n+1} \nu\left(a_{n+1}\right)+$ $a_{0} \ldots a_{n} \in M$ or there is evidence that (M, ν) is not an explicit maximal ideal. It follows that $a_{0} \ldots a_{n} \in M$ or there is evidence that (M, ν) is not an explicit maximal ideal. By applying the induction hypothesis to $a_{0} \ldots a_{n} \in M$, the proof is finished.

Theorem 2. Let $M \subseteq \mathbb{Z}[X]$ and $\nu: \mathbb{Z}[X] \rightarrow \mathbb{Z}[X]$ be given. Then, either there exists a prime number $p \in M$, or there is evidence that (M, ν) is not an explicit maximal ideal in $\mathbb{Z}[X]$.

Proof. First we construct some non constant $f \in M$: If $X \in M$ we are done. Otherwise, $X \nu(X)-$ $1 \in M$ or there is a witness that (M, ν) is not an explicit maximal ideal. Let d be the leading coefficient of f and $n:=\operatorname{deg}(f)$. We take some prime number q which is no divisor of d and consider $\nu(q) \in \mathbb{Z}[X]$. We check if $q \in M$ or $m:=q \nu(q)-1 \notin M$, if yes, we are done. Otherwise, we continue:

For each $i \in\{0, \ldots, n-1\}$ we apply $\nu(p) x^{i}$ to Lemma 1 and get some $k_{i} \in \mathbb{N}, h \in \mathbb{Z}[X]$ and $\left(a_{i j}\right)_{j \in\{0, \ldots, n-1\}} \in \mathbb{Z}^{n \times n}$ with

$$
d^{k_{i}} \nu(q) x^{i}+h_{i} f=\sum_{j=0}^{n-1} a_{i j} x^{j}
$$

Using the Kronecker delta $\left(\delta_{i j}\right)_{i j}$ we get

$$
\sum_{j=0}^{n-1}\left(d^{k_{i}} \nu(q) \delta_{i j}-a_{i j}\right) x^{j}=-h_{i} f .
$$

Let A be the matrix $\left(d^{k_{i}} \nu(q) \delta_{i j}-a_{i j}\right)_{i, j \in\{0, \ldots, n-1\}}$ then we have

$$
A\left(\begin{array}{c}
1 \\
x \\
\vdots \\
x^{n-1}
\end{array}\right)=\left(\begin{array}{c}
-h_{0} f \\
-h_{1} f \\
\vdots \\
-h_{n-1} f
\end{array}\right)
$$

Multiplying both sides by the adjugate matrix \hat{A} of A and using $\hat{A} A=\operatorname{det}(A) I$ leads to

$$
\left(\begin{array}{c}
\operatorname{det}(A) \\
\operatorname{det}(A) x \\
\vdots \\
\operatorname{det}(A) x^{n-1}
\end{array}\right)=\hat{A}\left(\begin{array}{c}
-h_{0} f \\
-h_{1} f \\
\vdots \\
-h_{n-1} f
\end{array}\right)
$$

In particular, the first line is $\operatorname{det}(A)=-\sum_{j=0}^{n-1} \hat{A}_{0 j} h_{j} f$. Looking at the definition of A, we have $\operatorname{det}(A)=d^{K} \nu(q)^{n}+b_{n-1} \nu(q)^{n-1}+\cdots+b_{1} \nu(q)+b_{0}$ for some $b_{0}, \ldots, b_{n-1} \in \mathbb{Z}$ and $K:=\sum k_{i}$. Hence,

$$
d^{K} \nu(q)^{n}+b_{n-1} \nu(q)^{n-1}+\cdots+b_{1} \nu(q)+b_{0}=\sum_{j=0}^{n-1}\left(-\hat{A}_{0 j} h_{j}\right) f .
$$

Multiplying both sides with q^{n} leads to

$$
d^{K}(q \nu(q))^{n}+b_{n-1} q(q \nu(q))^{n-1}+\cdots+b_{1} q^{n-1}(q \nu(q))+b_{0} q^{n}=\sum_{j=0}^{n-1}\left(-q^{n} \hat{A}_{0 j} h_{j}\right) f
$$

We define $m:=q \nu(q)-1$ which is equvialent to $q \nu(q)=m+1$. For each $i \in\{1, \ldots, n\}$ one can easily compute some polynomial g_{i} with $(m+1)^{i}=1+m g_{i}$. This leads to
$d^{K}+b_{n-1} q+\cdots+b_{1} q^{n-1}+b_{0} q^{n}=\sum_{j=0}^{n-1}\left(-q^{n} \hat{A}_{0 j} h_{j}\right) f+\left(-d^{K} g_{n}-b_{n-1} q g_{n-1}-\cdots-b_{1} q^{n-1} g_{1}\right) m$
As the left hand side is in \mathbb{Z} also the right hand side is. Furthermore, the left hand side can not be zero as otherwise $q \mid d$ (or $q \mid 1$ if $K=0$). By Lemma 2 one prime factor is in M or their is evidence that (M, ν) is not an explicit maximal ideal.

